
Foundations of Computer Science:
What are they and how do we teach them?

Viera K. Proulx, Richard Rasala and Harriet Fell
Northeastern University

Boston
MA 02115, USA

{vkp, rasala, fel} @ccs.neu.edu

Abstract
Computer science as a discipline is changing rapidly. New
developments in software and hardware are changing the way
we write programs, design systems, and create applications.
The role of the first year curriculum in computer science is to

lay the foundations for becoming a professional in the field.

We examine the ways in which the changing nature of computer

science influences our teaching methods, our view of which

concepts are fundamental, and the overall sense of what it takes

to become a successful computer scientist. We propose a first
year curriculum model that has a strong emphasis on design, on

programming in a structured project based environment, and on

the extensive use of tools, libraries, and templates. We
illustrate this model by describing a collection of graphics-

based exercises that apply computing across the disciplines.

1 Curriculum trends in computer science

1.1 Depth first versus breadth first
Unlike mathematics where the freshman curriculum has

consisted of calculus for generations, there is a significant
debate among computer science educators about what to teach

to freshman computer science majors. The two main views

have been described as ‘breadth first’ and ‘depth first’
ACM/IEEE Curriculum 91 [21]. The proponents of the ‘breadth
first’ view recommend that students receive a broad
introduction to computer science including topics such as

algorithmic, logic, computer architecture, machine languages,
high level languages, compilation, the elements of
programming, artificial intelligence, etc. The proponents of

the ‘depth first’ view recommend that programming be the

focal topic for the freshman year and that related topics such as

algorithms, data structures, and design be motivated as

providing a more powerful perspective on the programming
process. Both views have merit which is why the debate has

not and probably cannot be entirely resolved.

At Northeastern University, we organize the freshman program
on the ‘depth first’ model. We do this from a belief that what
brings a student into computer science in the first place is the
fact that a computer program designed from pure thought can

make the computer do wonderful things. We want to build on

Permission to tnal(e Cfigitalmarcl mpy of part or all of this work for personal
or classroom use is granted without fee provided that copies are not made
or distributed for profit or mmmercial advantage, the copyright notice, the
title of the ublication and its date appear, and notice is given that

!copying is y permission of ACM, Inc. To copy otherwise, to republish, to
post on servers, or to redistribute to lists, requires prior specific permission
andlor a fee.

Integrating Tech. into C.S.E. W96 Barcelona, Spain
01996 ACM O-89791 -844-u9WOO09...$505O

this excitement. We also have a practical reason. After the

freshman year, our students follow a cooperative education plan
in which they alternate academic work with work in industry
every three months. It is only by following a ‘depth first’
model that we can prepare our students to be ready for their first
job assignments in the software industry.

1.2 The importance of design
The rapid developments in both hardware and software that

have taken place in the past few years call into question the

traditional approaches to computer science education for

undergraduates. In 1976, Niklaus Wirth could summarize the

essence of software design in the title of his book Algorithms

+ Data Structures = Programs. The philosophy of this text is
that a knowledge of the classic algorithms and data structures is
the critical component in the education of a computer scientist.
The development of complete programs is seen as a relatively
simple top-down process in which the functional

decomposition of a design problem leads naturally to the use of

appropriate algorithms and data structures.

Today, the design and development of programs is more

complex and more subtle than the simple model suggested by

Wirth’s title. To train students to work in a modern software

development environment, it is essential to recognize that
classic algorithms and data structures are just the starting
point. The design process itself must be a major focus
throughout the curriculum. Traditionally, computer science
education has been most concerned with the design and

performance of individual algorithms on individual data
structures. It is now imperative that the design of large

program structures with elaborate functionalities and elegant
interfaces be treated as one of the central problems of computer

science education.

To build an innovative curriculum with a focus on issues of
design, it is important to recognize certain critical realities:

. The object-oriented paradigm has become central to the

design process [2, 10, 16]. The concept of object combines a

data structure with the algorithms that operate on it. Although
this combination may at first seem merely convenient, it

changes the entire design process from a top-down functional
model to a model of objects that interact with one another. The
bells and whistles of object-oriented design such as

inheritance, function and operator overloading, and templates
also make the use of objects more natural and more powerful
than classic data structures.

. Graphics and user interface design are now as fundamental
to programming as text [1,5,6,9,10,13,14, 18,19]. Due to the
needs of graphics and user interface design, modern operating

42

systems provide a much richer and more complex set of tools

than do classic operating systems. Many algorithms are
incorporated into the operating system as standard tools,

. Modern software development environments provide
algorithm toolkits and class libraries which extend the
underlying operating system toolkits. These proprietary

toolkits speed the development process on a particular system
but are not as portable as the underlying object-oriented

programming language. Extra design effort is required to
prepare an application for deployment on multiple systems.

. In some development environments, the starling point for

the development of large programs is an application framework

(based on toolkits and a class library) which defines the generic

behavior of an application without any of its specific details.

The programmer’s task is to find the critical points in the
middle of the framework where new or modified classes can be
used to instantiate the desired functionality of the specific

application being created.

. Program extensibility is carried one step further by

preparing an application to accept software plug-in’s which
can be inserted into the application after it has been compiled

and shipped.

Since the learning curve of objects, graphics, user interfaces,
toolkits, class libraries, application frameworks, and plug-in’s

is formidable, it is necessary to plan a multi-year curriculum

starting in the freshman year so that undergraduate students can
become familiar with the critical ideas and the numerous details
at a reasonable pace. To be successful, this curriculum must be
based on laboratory experiences not just on classroom
teaching and textbooks [1, 6 17, 19, 20].

At the freshman level, an extensive collection of laboratory

exercises must be developed which illustrate design issues,

explore algorithms, and encapsulate using class structures.
These exercises must also be rich in graphics, have high

quality user interfaces, and be excellent models of computing

applications. These laboratory projects should enable students
to experience design-in-context, that is, reaching a software

design goal by using a combination of existing code, toolkits,
class libraries, and new code developed specifically to meet the
particular design challenge.

2 Principles of apprentice based learning
At Northeastern, we have developed a teaching paradigm which

integrates a number of ideas in current science curriculum
reform with some approaches that are unique to our institution.

Our model is an apprentice based approach in which students

make meaningful contributions to interesting software

products but are not required to program every detail [4]. We

describe here the basic principles we have followed in creating

an environment to support this approach.

2.1 Robust programming environment
At the foundation of our programming environment are the
fundamental toolkits we provide. At present, we have already
implemented in C++ toolkits for windows, color graphics,

graphics text, convenient and robust IO, and various systems

utilities. Starting from this foundation, students can generate
graphics on their first day of programming and produce

interesting programs within a couple of weeks. We believe

that s~uden~s must begin programming at a level where

concepts are what really matters rather than on a lower level

where language technicalities become the main issue. Using

the toolkits, students can get going quickly and then pick up

the technical details of the programming language in a gradual

and systematic manner.

2.2 Shells for focus
We believe that students should focus on mastering one or two
concepts at a time, leaving the remaining tasks to shells and
components provided by the instructors. Laboratory projects

should enable students to experience design-in-context, that is,

reaching a software design goal by using a combination of

existing code, toolkits, class libraries, and new code that

students develop specifically to meet the particular design

challenge. In this way, students spend their time working of
the key parts of a project that illustrate the concepts under
study.

2.3 Design examples
It is very important for students to be able to read and study

substantial bodies of high quality code that solve real
problems. Design cannot be learned simply by statements of

principles. Students need to examine actual designs in which

the general principles are illustrated by solutions to specific

design problems. All of the software presented to the students

(toolkits, shells, components) should serve as models of

excellent design.

2.4 Graphics
Most of today’s students have grown up with computers. They
have used application programs with sophisticated graphical

user interfaces, they have played computer games, and they
have explored the World Wide Web. They expect more from a

computer than text-inkext-out programs. The student exercises
must be rich in graphics, have high quality user interfaces, and

be good models of computing applications. However, to be

most effective, graphics should not be used simply to get the

student’s attention or provide motivation. Graphics should be

used as an exploration tool, as a means of visualization, and as

an aid to debugging.

2.5 Animation
User controlled animation is an excellent method for
presenting dynamic processes such as algorithm behavior.

Algorithm animations have been created by a number of

computer science educators including ourselves [3, 5, 11, 15].

We use such animations for demos in our lectures but also make
them available to students who can run them to get an overall

gestalt of an algorithm or examine an algorithmic process in a

step-by-step fashion. Since all toolkits are open, we also have

students create their own algorithm animations.

2.6 Experimental analysis
The theoretical principles of algorithm analysis are difficult for
freshman students because of their limited experience with both
algorithms and the mathematics required for analysis. We
believe that students must acquire actual performance data by
executing timed algorithms. To examine this experimental

data, we encourage the use of spreadsheets for both numerical
and graphical analysis. Using these techniques, students get a

43

concrete understanding of order of magnitude estimates that a
mere statement of algebraic formulas cannot provide [15].

2.7 A variety of applications
In addition to exercises that focus directly on computer science

issues, students need to experience the variety of ways that

computing can be applied to different disciplines. An
important component of the projects in an apprentice based

curriculum must be exercises that illustrate how the computer

can be used to solve real life problems.

3 The software environment
We have built extensive software to support an apprentice
based style of learning. This software serves several learning

goals. First, it provides a robust infrastructure in the form of
toolkits, shells, and other software components. Second, it
supports an easily accessible use of graphics and provides

examples and models in different settings. Finally, all of the

software components may be used as resources for learning

about design and for learning how to read programs.

3.1 The toolkits
We describe here the three most basic toolkits we have
developed to provide a robust programming environment for
ourselves and our students.

3.1.1 IO Toolkit

Robust text-based input is supported by the IOTOOIS package.
The input tools in this package will catch every possible IO

error, print a polite error message, and then permit the user to

input the data again. A typical call to read a double precision
number radius has the simple form:

radius = RequestDouble (‘BEnter radius”, 10) ;

Notice that Request Doub 1 e handles a prompt and a default

value automatically. It is also possible to omit the default and
require the user to supply input. A third variation is illustrated

by the call:

while (Readi.ngDouble (‘f Enter radius”, radius))

{ . . . }

The function ReadingDouble returns true if the user provides

data and f als e if the user declines to provide data, This allows

the user to control whether or not to execute a loop based on
whether or not the data needed in the loop is provided. It is
also possible to control a loop based on multiple inputs:

while (ReadingDouble (‘tEnter X*l, x)

ks ReadingDouble (“Enter y“, y)) { . . . }

The point of these examples is that, by using IOTOOIS, input
integrates elegantly into the control structures and flow of the
C++ language. The philosophy is that input is not just data, it
is also control.

3.1.2 Windows toolkit

The windows package supports a model in which text-based

interactions occur in a console window and graphics and
mouse-based interactions occur in a graphics window.

Although these windows can be configured in arbitrary sizes
and locations, the ease of use of the package comes from the
fact that there are 16 particular named configurations that are
designed to handle most of the windows needs for the entire

suite of freshman laboratories. Students can quickly set up the
windows they need for their projects without reference to

system calls or numerical parameters.

3.1.3 Graphics toolkit

The graphics package supports pixel based drawing with a full
complement of lines and shapes. The package also supports
24-bit color with facilities to set common colors by name and
common shades with a single level parameter. Text in the

graphics window and mouse interaction are handled by related

packages. All graphics and animations are based on a few basic
commands:

. moveto, lineto, and drawline style commands

. paint, frame, erase, and invert commands for rectangles,

ovals, and circles

. commands to set foreground and background color

The graphics toolkit assures a uniform user interface as well as

orthogonality of the types of arguments that are accepted by
the different graphics functions.

3.2 The use of graphics
Graphics plays a very important role in our curriculum. From

the beginning, students participate fully in the design of
graphic images and learn how to create drawings, models, and

animations. Graphics are used for motivation, to assist in the

understanding of algorithms, to provide feedback during

debugging, to explore user interface design, and to visualize
concepts in other disciplines.

3.2.1 Motivation

Graphics is fun. A well designed demonstration or laboratory

assignment using graphics can create intense excitement in a

class. Students beome interested in learning the design
principles that underlie visual effects. They are also pleased to

produce products they can show off to friends and family.

3.2.2 Visual feedback

Many projects use graphics to give students visual feedback.
In some assignments, the graphics image is the end product of

the project and successful completion of an algorithm is
demonstrated by the correctness of a picture or an animation.
For example, loop animations and recursive fractals provide

testbeds for the understanding of key concepts. Graphics

output may also represent the evolution of an algorithmic
process, for example, progress in a maze search or changes in a

queue over a period of time.

3.2.3 User inte~aces

By creating graphic images students become aware of the

esthetic and functional appeal of their programs. Some of the
assignments further explore these issues. Students draw a
piano keyboard that is played by mouse clicks and they design
a primitive version of a paint program. After completing these
assignments, they discuss the design of the icons, their
functionality, and the need for error checking. Throughout the

44

year, students discuss the design of the graphics features that

are part of their assignments.

3.2.4 Modeling and visualization

A large number of laboratory projects are concerned with

modeling and visualization. Some projects explore data and
function plotting, others simulation, and others algorithm

animation. Students learn techniques for building such models
and animations. They see the enormous power of visualizing

abstract results and observing dynamic representations of time

dependent events.

3.3 Models of good design
All of our software is intended to serve as a model of good

design. It is used in lectures, in laboratory projects, and in
independent reading as a source of examples, design ideas, and
models to emulate. Exploring models of good design is an

integral part of our student’s learning process,

3.3.1 Reading Well-designed Source Code

In most of our projects, students start by reading some existing

code. In the earliest laboratories, they read model programs

that they can imitate or modify. As they learn to use functions

provided by the instructors, they examine the code available in

the main shell and the interfaces to the routines they will use.

Later on, they study the standard toolkits and learn to design

toolkits of their own.

Some of the toolkits or projects serve as examples that are
studied and examined during lectures. The IOTOOIS package

serves as an example of input verification and expression
parsing. The CharBuffer class which supports safe strings is
used as the first example of templates. The Swimming Fish

laboratory contains several simple yet non-trivial classes that

interact nicely with one another. Many of the early projects

are revisited later in the year for an examination of the design

decisions that were made in building the project.

3.3.2 Exploring the design alternatives

Many projects are miniature versions of similar applications in
real life. The goal of such projects is to make the underlying
ideas accessible to the students and to provide a framework for
exploring specific concepts. The minipaint project, the piano

keyboard, the traffic simulation, and the Game of Life are all

examples of such projects. In the classroom or m a post-lab
exercises, we challenge students to think about the limitations

of such simple designs. We look for features we may wish to
add, discuss the ways in which this may be accomplished,

observe the choices that were made originally, and consider the

constraints these design choices impose on possible future

changes.

3.3.3 The debugger

Students should learn to use resources available on the system
they work with. This establishes a pattern of lifelong learning
and good practice. We use the debugger to explain the
difference between value and reference parameters and between

pointers and regular variables. We trace function calls and we
track pointer traversal of character strings. Many of these
concepts are hard to observe directly and the debugger allows us

to ‘see inside’. Other similar tools or environments may be
used for the same purpose.

4 Typical projects
The freshman laboratory projects are designed to focus on one

or two main themes while using additional concepts and threads

in an auxiliary manner. The permits a student to concentrate on

the central issues of the project while integrating material
learned earlier and utilizing material that will not be taught
formally until a later date. Each project has a different level of

emphasis on control structures, data structures, classes, toolkit

building, program design, user interface design, and
algorithms. It is essential for an apprentice-based approach to
learning that over the course of a term students experience all

aspects of the software design process.

We will describe some typical laboratory projects and discuss

the themes empahsized by these projects.

4.1 Introductory projects
The first programming assignment is to write a C++ program to

generate a picture of their own design. During the first closed
laboratory session students examine and modify an existing

scalable drawing and use that program as a model for their
assignment. The requirement that their drawing must scale to

multiple sizes forces students to think more abstractly than if

they were drawing to absolute pixel positions. In this lab,

students use the basic toolkits and learn that code can be

separated into functions but they need only write inline code to

solve the assignment. Learning by imitation and code reuse are
key themes at this stage.

Despite the fact that students know almost nothing about C++
in depth, they produce spectacular drawings. Figure 1 is an
example of student work (Ryan Mitchell The Drum Set).

Figure 1 The Drum Set

In other early assignments, students learn about loops and

decision statements by animating a rolling or bouncing ball, a

floating balloon, or a roulette wheel. They also work with

sound by playing a siren, drawing a working piano keyboard,
or creating sound effects for the moving balls. The graphics

and sound provide tangible feedback in these early assignments

and help in the debugging stages.

45

4.2 Scientific problem solving
These projects examine themes in mathematics and the

sciences that can be illuminated by visualization and

simulation.

4.2.1 Data visualization

A computer generated contour map allows us to focus our

attention at that area of data values that we find most
interesting. In a simple exercise, students plot mathematically

defined functions of two variables using different colors to
represent function values. They vary the ranges for different
colors to be able to see better the points near zero, or to see the
shapes of the peaks. This technique is the basis of many
interesting applications such as the analysis of CAT scans or

satellite images of the Earth.

4.2.2 Mathematical functions

In the winter term, students do a pair of labs that use scaled

graphics of mathematical functions. These labs also elaborate

on the idea of classes. In the first lab, students build a complex
number class and test this class with both numerical and

graphical feedback. In the second lab, students build a complex
polynomial class. In order to test this class, students view a
polynomial P as defining a transformation z to P(z) on the
complex plane. To visualize this transformation, they plot the
image of a circle of a given radius under the action of P.

@@@
Figure 2 Polynomial Images at Radii 1, 2, 3

Figure 2 illustrates the image of a particular cubic polynomial
on circles of radii 1, 2, and 3. In the image of a circle of radius
3, it is clear that the cubic term in the polynomial dominates

since the image does a triple loop-the-loop. Similarly, in the
image of a circle of radius 1, it is clear from the double loop-

the-loop that the quadratic term dominates. The image of a

circle of radius 2 shows what happen in the transition zone
between cubic and quadratic dominance.

These images provide a visual foundation for discussing the
issues of order of magnitude estimates and big-O style notation
which are at the heart of later studies in analysis of algorithms.
The images also provide an explanation of the fundamental
theorem of algebra which states that a polynomial of degree N
has N roots. Since a polynomial of degree N loops N times for

large radii and contracts to a point as the radius tends to zero,

there must be a time when each large loop crosses the origin to

yield a root of the polynomial.

4.2.3 Simulations

To learn about queues, students model the movement of traffic

through an intersection. They implement the functionality of a
traffic signal, the queue that manages the incoming and
outgoing cars, and most of the functionality of the traffic lane
class which organizes the traffic flow in a lane.

study the code as an example of classes and abstractions.

During the lectures, we explain the graphic design and
implementation, the design of the classes for cars, queues,

traffic signals, traffic lanes, and the way these classes are

interconnected. We then challenge students to think about how

the model needs to be modified to simulate four-way traffic or
even several road intersections.

Figure 3 Traffic Simulation

In another project, students simulate a hospital emergency
room with a certain number of beds, arrival times, treatment
priorities, and expected length of stay. Both of these projects
illustrate the use of simulations in resource allocation and
planning.

4.3 Algorithm animation and visualization
In these projects, animation is used to visualize the dynamic

behavior of algorithms.

4.3.1 Algorithm design: Swimming Fish

The Swimming Fish laboratory is given midway through the

first term. Students design an algorithm to move a fish through
an underwater cave (maze) to find food. Students program the
search and can see immediately whether it works as expected.

Figure 4 Swimming Fish

At this stage of their studies the design of the shell is too

complex for students to do on their own but they are ready to

46

The basis for the search algorithm designed by the students are

three functions: MoveFish(direction), FreeToMove(direction),

and FoundFoodo. Students learn the power of abstraction when

they realize that they can solve the problem without referring

to lower level details about the geomety of the maze and the
location of the fish.

The foundations for the Swimming Fish lab are three classes

Maze. Fish, and Spot. Later in the course, we use Ihis design to

illustrate interacting classes.

4.3.2 Sorting

The first animated sorting movie is 15 years old [3] (Sorting

Out Sorting) and many other such animations have been built.
We built our own sorting animation to give students maximum

control of the learning process. Students can control the size
and structure of the data set and the timing (single step, slow
motion, or full speed). In addition, the representation of each

algorithm is customized to highlight the critical aspects of that

algorithm [5,6]. As a result, students can understand the

simpler algorithms within a few minutes.

At the completion of each algorithm, the application shows

the total number of moves, comparisons, and time ticks. This

data can be used to compare different algorithms and to
illustrate the best case or worst case examples.

4.3.3 Algorithm analysis

To follow up on the sorting animations, students use a

program, Time Trials, that collects timing data for all sorting

algorithms. It is an important experience for the students to

collect this data since they learn that some algorithms can take

a half hour to accomplish what quicksort does in a few seconds.

The data files generated by this program can be imported into a

spreadsheet. The students can perform real data analysis and
experiments [15]. The spreadsheet charts permit the students

to see the gross differences between 0(N2) and O(N.logN) sorts
and the fine details in various implementations of quicksort and
heapsort.

In another project, students write their own data collection
program for several variants of the Union/Find algorithm and

analyze the collected data. This experiment is very impressive.

Students learn that by adding path splitting at a cost of one line

of code, there is a 100-fold improvement in performance. They

see that even a simple optimization may be very effective and
is worth investigating.

4.3.4 Recursion

Recursion can be represented at several levels. We hope that
by seeing different representations of recursive processes,
students will gain deeper insight into this problem solving

technique. We use exercises where the goal is to draw simple

fractal curves such as the Mandelbrot snowflake or trees with a
given number of branches, These fractals are based on a simple

abstraction of a Logo-type turtle.

A Towers of Hanoi animations used in class. The animation

illustrates graphically the progress towards the solution and
thecurrent contents of thecall-return stack [5].

4.3.5 Morphing

Inthemorphing exercise, students transform afigure drawn by
connecting twenty points into a new image using linear
interpolation (morphing). In terms of programming, it is a

simple exercise on using arrays. The visual impact is very

powerful and students learn how morphing animations are

created.

Figure 5 A Morphed Person

Curiously enough, we also implemented this exercise using a

spreadsheet where the morphing is controlled by a slider. A
similar spreadsheet-based application shows how morphing
from an average human face to one’s picture and extrapolating

beyond can be used to draw a caricature [12].

5 Future development
Our plans for the future development include:

. converting most of the existing Pascal based labs and
projects to C++

. creating additional projects that utilize the object-oriented
capabilities of C++

. porting the existing toolkits and projects to a Windows

based environment

. writing additional support materials such as an instructor’s

guide and supplementary material related to the computer
science topic that is the theme of a particular project

● making all the materials available electronically

. designing a process for collecting data and feedback from
those that use our materials

6 Conclusion
We believe that the ability to handle complexity is one of the

fundamental requirements for success in computer science. It is

not sufficient for students to learn classic algorithms and data

structures. Students should learn how to invent and encapsulate
new algorithms and data structures. Along with a mastery of
building such components of a program, students must learn
how to design programs in the large.

47

In order to design large programs, students need to work with

standard toolkits, libraries, and templates and must learn how

to create new ones. In the first year of computer science,
students must experience numerous examples of good design

with well organized internal structures and pleasing graphical
user interfaces. It is important for students to see a variety of
applications so that they understand the breadth of problems to
be solved by computing techniques.

3

4

It is our hope that the toolkits and laboratories described in ~~

this article will inspire similar efforts at other universities

since we believe that computer science students need to be

involved in the design process as soon as possible.

The existing C++ materials are currently available on the Web 16

at the URL: http://www.ccs. neu.edu/home/rasala/cpp. html.
17

References

1

2

3

4

5

6

7

8

9

10

11

12

Abernethy K., Allen, J. T. Experiments in Computing:
Laboratories for Introductory Computer Science in THINK 18
Pascal, Brooks/Cole, Pacific Grove, CA, 1992.

Astrachan, O., Reed, D. AAA and CS 1: The Applied

Apprenticeship Approach to CS 1, SIGCSE Bulletin, Vol. 19

27, No. 1, March 1995, pp. 1-5.

Baecker, R. M. and Sherman, D. Sorting Out Sorting,

16mm color sound film, 30 minutes, 1981. (Shown at 20

ACM SIGGRAPH ‘81 in Dallas, TX and excerpted in ACM
SIGGRAPH Video Review No. 7, 1983.) 21
Brown, C., Fell, H. J., Proulx, V. K., and Rasala, R.
Instructional Frameworks: Toolkits and Abstractions in

Introductory Computer Science, Proceedings of ACM 22
Computer Science Conference, Indianapolis, IN, February
1993.

Brown, C., Fell, H. J., Proulx, V. K., and Rasala, R. Using
Visual Feedback and Model Programs in Introductory

Computer Science, Journal of Computing in Higher

Education, Vol. 4, No. 1, Fall 1992, pp. 3-26.

Brown, C., Fell, H. J,, Proulx, V. K., and Rasala, R.
Programming by Example and Experimentation,
Proceedings of the Fourth International Conference on

Computers and Learning (4th ICCAL), Acadia University,
Wolfville, Nova Scotia, June 1992.

Feldman, T, J., Zelenski, J. D. The Quest for Excellence in
Designing CS 11CS2 Assignments, SIGCSE Bulletin, Vol.
28, No. 1, February 1996, pp. 319-323.

Freund, S. N., Roberts, E. S. THETIS: An ANSI C
Programming Environment for Introductory Use, SIGCSE

Bulletin, Vol. 28, No. 1, February 1996, pp. 300-304.

Kurtz, B. L., Mayekar, U. S., and O’Neal, M. B. Design
and Implementation of a Generalized Problem Solving

Assistants for Algorithm Development, SIGCSE Bulletin,
Vol. 27, No. 1, March 1995, pp. 97-101.

Naps, T. L., Swander, B. An Object-Oriented Approach to
Algorithm Visualization - Easy, Extensible, and Dynamic,
SIGCSE Bulletin, Vol. 26, No. 1, March 1994, pp. 46-50.

Naps, T. L., Stenglein, J. Tools for Visual Exploration of
Scope and Parameter Passing in a Programming Languages

Course, SIGCSE Bulletin, Vol. 28, No. 1, February 1996,
pp. 305-309.

Neuwirth, E. Private Communication.

O’Neal, M. B., Kurtz, and Watson, B. L. A Modular

Software Environment for Introductory Computer Science

Education, SIGCSE Bulletin, Vol. 27, No. 1, March 1995,
pp. 87-91.

Proulx, V. K., Fell, H. J., and Rasala, R. Interactive
Animations in Computer Science, Proceedings of
Frontiers in Education 93 (23rd Annual Conference:
Engineering Education: Renewing America’s

Technology), IEEE Press, November 1993, 786-790.

Rasala, R., Proulx, V. K., Fell, H. J. From Animation to

Analysis in Introductory Computer Science, in

Proceedings of ACM Computer Science Conference,
Phoenix, AZ, March 1994, pp. 61-65.

Reid, R J. The Object-Oriented Paradigm in CS1, SIGCSE

Bulletin, Vol. 25, No. 1, March 1993, pp. 265-269.

Roberg6, J., Suriano, C. Using Laboratories to Teach

Software Engineering Principles in the Introductory

Computer Science Curriculum, SIGCSE Bulletin, Vol. 26,
No. 1, March 1994, pp. 106-110.

Roberts, E. S. A C-Based graphics Library for CS 1,
SIGCSE Bulletin, Vol. 27, No. 1, February 1995, pp. 163-

167.

Scragg, G., BaldwinD., and Koomen, J. Computer Science

Needs an Insight-Based Curriculum, SIGCSE Bulletin, Vol.

26, No. 1, March 1994, pp. 150-154.

Thweatt, M. CS 1 Closed lab vs. Open Lab Experiment,

SIGCSE Bulletin, Vol. 26, No. 1, March 1994, pp. 80-82.

Tucker, .A. B. et. al. (cd.), Computing Curricula 1991,
Report of the ACM/IEEE-CS Joint Curriculum Task Force,
ACM Press, 1991.

Wallace, S. R. and Wallace, F. J. Two Neural Network

Programming Assignments Using Arrays, SIGCSE
Bulletin, Vol. 23, No. 1, March 1991, pp. 43-47.

48

