
Typing the Numeric Tower

Vincent St-Amour1, Sam Tobin-Hochstadt1, Matthew Flatt2, and Matthias Felleisen1

1 Northeastern University
{stamourv,samth,matthias}@ccs.neu.edu

2 University of Utah
mflatt@cs.utah.edu

Abstract. In the past, the creators of numerical programs had to choose between
simple expression of mathematical formulas and static type checking. While the
Lisp family and its dynamically typed relatives support the straightforward ex-
pression via a rich numeric tower, existing statically typed languages force pro-
grammers to pollute textbook formulas with explicit coercions or unwieldy nota-
tion. In this paper, we demonstrate how the type system of Typed Racket accom-
modates both a textbook programming style and expressive static checking. The
type system provides a hierarchy of numeric types that can be freely mixed as
well as precise specifications of sign, representation, and range information—all
while supporting generic operations. In addition, the type system provides infor-
mation to the compiler so that it can perform standard numeric optimizations.

1 Designing the Numeric Tower

From the classic two-line factorial program to financial applications to scientific com-
putation to graphics software, programs rely on numbers and numeric computations.
Because of this spectrum of numeric applications, programmers wish to use a wide vari-
ety of numbers: the inductively defined natural numbers, fixed-width integers, floating-
point numbers, complex numbers, etc. Supporting this variety demands careful attention
to the design of programming languages that manipulate numbers.

Most languages have taken one of two approaches to numbers. Many untyped lan-
guages, drawing on the tradition of Lisp and Smalltalk, provide a hierarchy of numbers
whose various levels can be freely used together, known as the numeric tower. For ex-
ample, the following Racket expression mixes arbitrary precision integers with inexact
floating-point numbers and produces a complex result:

(sqrt (/ 3.14159 (- (expt 2 32))))

That is, the numeric tower supports concise expression of mathematical formulas.
Other languages provide static checking of various numeric operations, ensuring

that results conform to machine representations of numbers. Static checking helps pro-
grammers reason about the requirements, behavior, and performance of their programs.
Some languages also provide a limited ability to combine different forms of numbers
together in arithmetic operations for a small set of numeric representations. No existing
typed language provides as rich a numeric hierarchy nor as many generic operations as
those found in Smalltalk, Scheme, or Racket.

In this paper, we describe the design of the numeric tower in Typed Racket (Tobin-
Hochstadt and Felleisen 2008), which combines expressiveness with static checking.
Typed Racket is an explicitly and statically typed sister language to Racket, a mostly-
functional language (Flatt and PLT 2010). Using Typed Racket, programmers may
convert untyped Racket programs by adding explicit type declarations. In the exist-
ing type system, we can encode fine distinctions in the hierarchy of numeric types and
express numerous mathematical properties of numeric operations in their types. Com-
bining these features allows programmers to state and enforce static properties about
their numeric programs while maintaining the concise mathematical expression of un-
typed Racket. Furthermore, we can reuse standard optimization techniques to reap the
performance benefits of static typing.

Three features of Typed Racket support this design. Due to true union types (Bune-
man and Pierce 1999) the choices of numeric types do not need to reflect the under-
lying runtime representation of numbers nor do they affect the representation. For ex-
ample, Integer is the union of positive and negative integers, yet Racket’s run-time
representation has no knowledge of this division. Due to overloading with intersection
types (Coppo and Dezani-Ciancaglini 1978; Reynolds 1988) the type system supports
precise specification of the behavior of numeric operations such as + without necessi-
tating multiple implementations. Thus it can express that adding two positive integers
produces a positive integer and adding a negative integer to a negative floating point
number produces a negative floating point value. Due to occurrence typing (Tobin-
Hochstadt and Felleisen 2008, 2010) the type checker can “lower” the numeric types of
variables based on dynamic tests including predicates and numeric comparisons.

The remainder of the paper begins with a series of examples that illustrate Typed
Racket’s approach to numeric computations. We then describe the encoding of the type
hierarchy in section 3, the typing of numeric operations using overloading in section 4,
and the use of occurrence typing to refine types in section 5. Finally, in section 6, we
describe our implementation, focusing on challenges concerning usability.

2 A Rich Numeric Tower

We introduce Typed Racket and its approach to numeric programming with a series of
small examples. The mathematical absolute value function, | − |, takes real numbers to
non-negative real numbers. As figure 1 shows, a programmer can naturally express this
simple fact via types. Furthermore, the function definition itself transliterates the text-
book definition of abs into the concrete syntax of a functional programming language;
Typed Racket’s type system accomplishes the rest.

The pythagorean function also benefits from encoding sign information in the
type system. Racket’s sqrt function, like its mathematical counterpart, optionally may
yield complex numbers. Programmers often write programs, however, that depend on
real-valued results from sqrt. To accommodate the latter, the type of sqrt in Typed
Racket maps non-negative reals to non-negative reals. Because the square of any real
number is provably always non-negative and the sum of two non-negative numbers is
also non-negative, the type system can validate that the length of the hypotenuse of any
right triangle is non-negative. See the type of the pythagorean function in figure 1.

(: abs : Real → Nonnegative-Real)
(define (abs x) (if (> x 0) x (- x)))

(: pythagorean : Real Real → Nonnegative-Real)
(define (pythagorean a b) (sqrt (+ (sqr a) (sqr b))))

(: nat->hex : Natural → (Listof Byte))
(define (nat->hex n)

(cond [(= n 0) ’()]
[else (cons (modulo n 16) (nat->hex (quotient n 16)))]))

(: sum-vector : (Vectorof Integer) → Integer)
(define (sum-vector v)

(define n (vector-length v))
(let loop ([i 0] [sum 0])

(if (< i n) (loop (+ i 1) (+ sum (vector-ref v i))) sum)))

(: gen-random : Float Float → Float)
(define (gen-random min max)

(next) (+ min (/ (* (- max min) x) p)))
(define p (- (expt 2 31) 1))
(define A (expt 7 5))
(define x 42) ; state of the PRNG
(define (next) (set! x (modulo (* A x) p))) ; xi+1 ≡ A · xi (mod p)

Figure 1: Numeric programs in Typed Racket

Sign properties are a special case of range properties, another common set of proper-
ties that programmers want to establish. For instance, two program fragments may need
to communicate via a protocol that limits the range of encoded values. A type system
that supports subtyping and overloading makes it possible to mix and match fixed-width
and unbounded integers, both widely used by Racket programmers. Hence, program-
mers can have the mathematically correct behavior of unbounded integers as the default
and may still enforce range properties when desired, without explicit coercions.

In the third example of figure 1, Typed Racket’s type system guarantees that the re-
sult of (modulo n 16) fits within a byte. Arguments to nat->hex can be unbounded
integers, and the range properties still hold. Similarly, in the fourth example, the type
system guarantees that i is of type Index, which is bounded by the maximum length of
Racket vectors. This ensures that vector index computations are performed directly us-
ing machine arithmetic instead of costly arbitrary precision operations; all index compu-
tations in sum-vector use machine integers directly. Furthermore, the results of these
functions can be freely mixed with unbounded integers in subsequent computations,
without introducing explicit coercions.

The ability to freely mix numbers from different levels of the numeric tower in arith-
metic expressions is another convenience of blackboard mathematics that is important
for programmers. Again, many type systems require explicit coercions for mixed value
expressions, as in Standard ML, Ocaml or Haskell, or provide a limited set of built-in
implicit coercions, as in C or Java. A type system that can encode the promotion rules
of arithmetic operations when used on operands of mixed types saves the programmer
from having to repeatedly encode these rules in his programs in an ad-hoc manner.

The last example in figure 1 presents an implementation of Lewis et al. (1969)’s
multiplicative congruential pseudo-random number generator that features mixed-type
arithmetic with integer and floating-point numbers. Local type inference (Pierce and
Turner 2000) determines that p, A and x are of type Integer and both arguments to
gen-random (min and max) are of type Float. In the boldface section, the result of
the subtraction, a floating-point number, is multiplied by an integer, which results in a
floating-point number. This implementation is structurally that of a textbook; the actual
mathematical operations are unobscured by coercions or other artifacts.

3 Encoding the Numeric Hierarchy

To encode arithmetic specifications, a type system must classify numbers. For exam-
ple, if a type system is to encode specifications involving sign properties, it needs to
distinguish between positive and negative numbers at the type level. To reason about
exactness of results, a type system needs to encode exactness of numbers as part of
their type. We express distinctions along these axes using true unions and subtyping.

3.1 Union types

Typed Racket provides general union types. For example, (U Integer Float) con-
tains all integers as well as all floating-point numbers. Subtyping follows the usual rules
for union types, e.g., both the Integer type and Float type are subtypes of (U In-
teger Float). It thus is possible to use either an integer or a floating-point number
as a value of the union without injection.

Since true unions do not add tags to the values of their constituents, they do not
impose constraints on the underlying machine-level representation of data, which has
several benefits. First, we can overlay a type hierarchy on top of Racket’s existing rep-
resentations, without requiring changes to the compiler and runtime. Second, we can
make finer-grained distinctions at the type level than at the representation level. For
example, while Racket uses the same IEEE 754 floating-point representation scheme
for positive and negative floating-point numbers, Typed Racket distinguishes the two
at the type level by providing both a Positive-Float and a Negative-Float type.
Finally, because we build our numeric types as unions of non-overlapping base types,
the intersection of any two numeric types is necessarily a union of some of those non-
overlapping base types and thus denotes a valid type. Therefore, we reap some of the
benefits of useful intersection types without the need for general intersection types.

3.2 Layers of Numbers

Figure 2 shows Typed Racket’s layers of the numeric hierarchy. Most layers corre-
spond to well-known sets, such as integers, rationals, and complex numbers. Others
correspond to numbers with specific machine representations, such as floating-point.

These layers are similar to the numeric types offered by most programming lan-
guages. In addition to the usual integer and floating-point layers, Typed Racket offers
exact rationals and both exact and floating-point complex numbers. Members of these
layers are integrated with the rest of the numeric tower: operations on numbers from
other layers of the tower can produce rationals or complex numbers. For example, the
result of dividing 2 by 5 is the fraction 2

5 . Rationals and complex numbers can also be
mixed freely with numbers from the other layers of the tower; e.g., the addition of the
rational 2

5 and the integer 3 yields the rational 17
5 .

Zero Float-Zero

Positive-Rational

Negative-Rational

Positive-Float

Negative-Float

Positive

Negative

RealComplex

Exact-Complex Float-Complex

FloatRational

Integer

Integer

Zero

Positive-Byte

Positive-Index

Positive-Fixnum

Negative-Fixnum

Positive-Integer

Negative-Integer

Fixnum

Figure 2: Typed Racket’s numeric type hierarchy, with signs

Layers are related by subtyping in the expected fashion; Integer is a subtype of
Rational, which is a subtype of Real. Float is also a subtype of Real. All numeric
types in Typed Racket are subtypes of Complex. For convenience, Typed Racket pro-
vides a Number type as a synonym for Complex; we use the two interchangeably.

3.3 Signed Types

As a refinement of layers, Typed Racket distinguishes numbers based on their sign.
Typed Racket offers positive and negative subdivisions of all layers except Complex,
as well as types for integer zero and for both of the floating-point zeroes, producing
types such as Positive-Integer and Negative-Rational.

In addition, unions can express types such as Natural, which corresponds to the
union of Positive-Integer and Zero, the type of the integer zero. It would be pos-
sible to subdivide the Complex layer into quadrants to achieve a similar effect.

The different zero types are singleton types that contain only the appropriate zero.
Singleton types for first-order values are straightforward, and fit nicely in our subtyping
hierarchy. For convenience, a Float-Zero type containing both floating-point zeroes is
provided, as well as a Real-Zero type that also includes the integer zero. Since these
different zero values cause distinct behavior when used as arguments, we distinguish
them both at the type level as well as at the value level. As explained in section 5, zero
types are most useful for comparisons. Since comparisons are not defined on complex
numbers, complex zero types are of limited usefulness and are not provided.

As expected, the sign distinctions preserve the subtyping of layers: Positive-
Integer is a subtype of Positive-Rational. In addition, signed subsets are sub-
types of their parent layer: Positive-Integer is also a subtype of Integer. In fact,
Integer is the union of Positive-Integer, Negative-Integer and Zero. Simi-
larly, the Positive type is the union of the “positive” types. Figure 2 shows how sign
distinctions refine the numeric hierarchy; see the dotted lines.

3.4 Encoding Range Information

The integer layer is further subdivided into fixed-width integer types, corresponding to
different ranges. The Byte type contains the integers from 0 to 255, the Index type is
bounded by zero and the length of the longest possible Racket vector. The Fixnum type
contains all integers that Racket stores as tagged machine integers on every platform.3

Those ranges capture a large number of use cases in existing Racket programs. Other
ranges could be provided as needed. To prevent base types from overlapping, we fix
the ranges when implementing the type system. In addition, bounds on range types are
static; bounds cannot depend on values, unlike in dependently-typed systems.

Sign distinctions can also apply to these types to express types such as Positive-
Byte or Negative-Fixnum. These types are also related by subtyping: Byte is a
subtype of Index, which is a subtype of Nonnegative-Fixnum. Figure 2 shows a
close-up view of the subdivisions of the integer layer.

4 Typing Operations

To exploit our numeric tower, we need type signatures for primitive operations that are
generic and yet as tightly specified as possible. For example, if x and y are Integers,
then (+ x y) is also an Integer, yet if x and y are Float-Complex numbers, then
that should be the result type as well. In this section, we present both the properties of
our basic type environment and the mechanisms for expressing such properties.

4.1 Overloading with Ordered Intersection Types

Untyped Racket already provides overloading for numeric operations. The function +
produces exact results when given exact inputs, and otherwise produces inexact results.
The challenge for Typed Racket is to represent these overloadings in the type system
and to refine them using the distinctions that only exist in the type environment.

3 This last point is discussed further in section 6.4

We use ordered intersection types to express the multiple possible behaviors of nu-
meric operations. Intersection types (Coppo and Dezani-Ciancaglini 1978; Reynolds
1988) are well known in the type system literature and have been extensively studied
in many contexts. In their most general form, intersection types are too expressive and
undecidable. Typed Racket instead offers a pragmatic flavor of intersections of function
types.4 To increase the predictability of the system for programmers, intersections of
function types are considered in order, with earlier types taking precedence over later
types.5 Thus, the following types are equivalent in Typed Racket:

> → > (> → >) ∧ (Integer→ Integer)

because > is a supertype of Integer, and thus the first conjunct applies in all possible
cases. Typed Racket provides the case→ type constructor to build function intersection
types. Using this type constructor, we can express this fragment of the type of +:

(: + (case→ (Integer Integer → Integer)
(Float Float → Float)
(Number Number → Number)))

Although intersection types are useful for functions that branch based on their input
type, conditionals are not required. For example, this program type checks:

(: f (case→ (Number → Number) (String → Number))
(define (f x) 0))

A function definition with an intersection type must check properly for each branch in
the intersection, but no other restrictions are imposed.

In the remainder of this section, we consider several varieties of numeric operations,
and show how fine-grained numeric types and overloading via ordered intersections
help us express a variety of semantic properties in our type system.

4.2 Simple Numeric Operations

The most basic use of overloading for numeric operations is to express the closure
properties of arithmetic operations such as + and *. For example, the type of + includes
conjuncts specifying that the sum of two Integers is an Integer, and that the sum of
two Real numbers is also Real. These properties hold for * as well.

Signed types provide scope for expressing useful mathematical properties. For ex-
ample, the type fragment

(Negative-Real Negative-Real → Positive-Real)

4 Intersections of function types are especially interesting because they reify overloading.
5 The need for ordered intersection types is further motivated by Racket’s case-lambda con-

struct whose operational behavior calls for an ordered execution of clauses.

expresses that * produces positive real numbers when given negative inputs. Using over-
loading, the types of *, /, and other operations can express these properties precisely.

Range-bounded types are trickier, because they enjoy fewer closure properties. For
example, the sum of two Indexes may not be an Index itself, because integer addition
in Racket can exceed the length of the largest possible vector. However, the sum of two
Indexes is a Fixnum.

Further, Racket and Typed Racket support mixed-typed arithmetic. Hence, the types
of primitive operations must describe this behavior as well. For example, the sum of a
Float and an Integer is a Float by the promotion rules for addition.

4.3 Other Operations

Many numeric operations in Racket have semantic properties that are expressible us-
ing the combination of overloading and our numeric type hierarchy. For example, the
modulo operation, when given a bounded modulus, produces a bounded result. This
property is key to typing the nat->hex function in figure 1. Other operations that are
given similarly expressive types include floor, ceiling, and round.

Coercion operators can also be precisely typed using overloading. The function
exact->inexact, which converts exact integers and rationals to floating point val-
ues, comes with a type that includes the clauses Real → Float and Complex →
Float-Complex.

Finally, some operations have special properties on parts of their domain. The sqrt
function potentially produces Complex results, but it produces Nonnegative-Reals
for non-negative inputs. The pythagorean function in figure 1 relies on this overload-
ing to prove that the third side of a right triangle always has non-negative length.

5 Refining Types with Dynamic Tests

In many cases programs use dynamic tests to determine properties of numeric values.
The Typed Racket type system uses occurrence typing (Tobin-Hochstadt and Felleisen
2008, 2010) to refine the types in the program using dynamic type tests such as exact-
integer? and positive?. In addition, we can also express useful properties of com-
parison operators using occurrence typing, thus refining types even further.

5.1 Numeric Predicates

The key idea of occurrence typing is expressed with the abs function from figure 1:

(: abs : Real → Nonnegative-Real)
(define (abs x) (if (positive? x) x (- x)))

To check this function, the type checker proceeds as follows.

– The function signature assigns Real to x.
– Based on (positive? x), the type system determines that if the condition holds,
x must have the type Positive in the then branch.

– Since restricting Real to Positive produces a subtype of Nonnegative-Real,
the then branch type checks correctly.

– In the else branch, the type of x must be both a Real and not Positive, yielding
the Nonpositive-Real type, which via negation yields the Nonnegative-Real
type, as desired.

To express that positive? determines whether its argument has type Positive,
its type is

positive? :
(

x : Real
Positivex−−−−−−→ Boolean

)
The annotation above the arrow is a proposition about the parameter x. Specifically, it
says that x is positive if the result is true and it is not positive otherwise. With types
such as this one, Typed Racket understands many more numeric predicates than simply
positive?, including real?, inexact?, fixnum? and others.

Because Typed Racket has a precise type hierarchy, a wide variety of predicates can
refine types. For example, Positive is a union of positive integers represented both as
machine integers and bignums, as well as positive exact rationals and positive floating
point numbers. A type hierarchy with coarser-grained distinctions would sacrifice some
of the precision available for describing the behavior of positive?.

Another advantage of occurrence typing in combination with numeric predicates
is that it greatly reduces the need for explicit downward coercions within the numeric
hierarchy. For example, the following function verifies that its input is an exact integer:

(: assert-exact-integer : Any → Integer)
(define (assert-exact-integer in)
(if (exact-integer? input) in (error "not an integer")))

Without occurrence typing, this program would require an explicit injection into the ex-
act integer type. Instead, we leverage both the untagged union representation of Racket
numbers and the handling of predicates by the type system to avoid coercions.

5.2 Comparison Operators

While occurrence typing is useful for predicates, programmers are more likely to em-
ploy comparison operators than predicates in numerical programs. Returning to the abs
function, we can rewrite its body to use a comparison and it still type checks:

(if (> x 0) x (- x))

From the programmer’s perspective, the two versions of the function are identical.
The > function is not a predicate, however. We can still use the expressiveness of the
types to encode this information in the type of >, leading to (among other overloadings):

> :
(

x : Real y : Zero
Positivex−−−−−−→ Boolean

)
That is, when the second argument (y) of > is Zero, the result of the comparison is true
only if the first argument (x) is Positive.

Comparison with distinguished integer literals is a special case that appears only in
a few types of the base environment. More commonly, comparison operators are used
as in the sum-vector function given in figure 1. Its definition is

(define (sum-vector v)
(define n (vector-length v))
(let loop ([i 0] [sum 0])

(if (< i n) (loop (+ i 1) (+ sum (vector-ref v i))) sum)))

There are several aspects of this definition to note. First, n is the result of vector-
length, which must be of type Index. Second, i is initially 0 and it is only incre-
mented, classifying it as a Natural. Now, when we consider the comparison opera-
tion, we see that if (< i n) is true, then i must be both greater than 0 and smaller than
the largest possible vector, meaning that i must be an Index itself in the then branch.
This is exactly the needed information to prove that i is always a Fixnum, allowing
the compiler to optimize both the addition and comparison to use simple and efficient
machine instructions.

To express this information, we again use the mechanism of associating propositions
about argument types with the boolean result of functions:

< :
(

x : Natural y : Index
Indexx−−−−→ Boolean

)
Further, this technique applies to comparison operators for all range-bounded types,
such as Fixnum, as well as signed types such as Negative.

Using occurrence typing in conjunction with overloadings of comparison operators,
Typed Racket can automatically prove tight bounds on numeric types based solely on
the dynamic checks already present in programs. This supports both optimization and
static checking for programs such as sum-vector.

6 Implementation

Over the past year, we implemented the type environment of sections 3 through 5 in
Typed Racket without changing the basic type system. More precisely, the type assign-
ment for the primitive operations now encodes basic mathematical theorems. Building
a practical type system from these encodings has posed some challenges, however. We
discuss the interesting ones in this section.

6.1 Precise Types and Invariance

While it is generally desirable to assign precise types that include sign and range infor-
mation, doing so can sometimes lead to unexpected behavior. Consider the program

(define x (box 3))
(set-box! x 2000)

This program defines a mutable box that contains the integer 3. The most precise type
we can locally infer for 3 is Positive-Byte, and if we were willing to use this type, x
could be assigned the type (Boxof Positive-Byte). This type assignment implies,
however, that attempting to set the contents of x to 2000 is a type error. Similar issues
arise with any invariant type constructor.

Although this behavior is perfectly correct from a theoretical perspective, it has
severe usability drawbacks. In the code bases we studied, initializing a box with a small
integer, often zero, and later assigning significantly larger ones is a common occurrence.
We therefore make this common case the default.

This decision means that the typechecker generalizes types that are used as argu-
ments to invariant type constructors. In the above example, Positive-Byte would be
generalized to Natural, and x would be of type (Boxof Natural), which is more
broadly useful. Generalization requires balancing of course. For example, we could use
Complex instead of Natural, but doing so would discard all the information contained
in the original type. The generalization function takes into account heuristics inspired
by our corpus of numeric Racket programs as well as feedback from users of Typed
Racket.

Finally, programmers can override the results of local type inference with explicit
annotations to assign more permissive or restrictive types.

6.2 Precise Types and Arguments

Precise types make it possible to enforce interesting numerical properties, but it may be
inconvenient to enforce them at all times. For example, we could restrict vector-ref,
which indexes into a vector, to accept only indices of type Index, which are guaranteed
to not exceed the length of the longest possible vector.

An experiment with this choice indicates, however, that it leads to severe usability
issues in practice. Consider this variant of sum-vector from figure 1:

(define (sum-vector v)
(define n (vector-length v))
(let loop ([i (- n 1)] [sum 0])

(if (> i -1) (loop (- i 1) (+ sum (vector-ref v i))) sum)))

This loop should produce identical results to the original version of sum-vector,
despite iterating backwards over the input vector. In this case though, the index i cannot
be assigned the Index type, since its value is -1 for the last iteration of the loop. If we
enforce that vector-ref can only accept indices of type Index, this program would
not type check and the programmer would have to rewrite the loop to appease the type
checker. Our experience suggests that this typechecking failure is both confusing and
frustrating to programmers.

To avoid such usability problems, our type system abides by Postel’s law (Postel
1980) as a guiding principle for the types of the Typed Racket standard library. Li-
brary functions typically feature somewhat permissive argument types—vector-ref
accepts Integer as an index, and errors if necessary—and the most precise return type
possible. That way, the proof obligations do not overwhelm the programmer. And yet,

programmers can benefit from precise return types when they do want to enforce stricter
properties in their own code.

Thus, if a program wants to communicate that vector indices can only be of type
Index, it is possible:

(: picky-vector-ref : (∀ (X) (Vectorof X) Index → X))
(define picky-vector-ref vector-ref)

Since the new restrictive type is a subtype of the original type of vector-ref, the
program typechecks just fine. This technique could also be used to statically enforce
that the second argument of the division operator cannot be zero.

6.3 Printing Types

Encoding properties in types means types become large. Although manipulating, and
operating on, such large types intuitively impacts type-checking time, we have not no-
ticed a significant impact in practice. The large size of these types is problematic, how-
ever, when a programmer must see them.

Error reporting is the most important point of contact between programmers and the
types of primitives. If a function is given arguments of the wrong type, an error message
is displayed, along with the valid argument types of this function. By displaying the
domains of the function, the error informs the programmer of what constitutes a valid
argument to the function. As such, this type is useful information.

Unfortunately, the large number of cases in some numeric types causes an explosion
in the size of error messages. An example of such an error message is shown in the left
column of figure 3. Each of these domains are associated to a different return type:
adding two Bytes results in an Index, adding two Floats results in a Float, and so
on. It makes sense to have all these domains as part of the type, but this information
does not belong in error messages. If a programmer passes a string to the + function,
the error message should merely say that + accepts only numbers.

To reduce the extraneous information in error messages, the type checker filters out
domains that are subtypes of other domains. In the above example, since all domains
are subtypes of Number, only this last one is displayed, as shown in the right column
of figure 3. The error message is just as informative and much easier to digest than the
original. This heuristic also ensures that the type checker does not discard unrelated do-
mains. For example, if a function has just two domains, Integer and Float, both are
present in the error message because they are unrelated by subtyping. This is desirable
because both branches carry useful information.

In addition, before filtering subsumed domains, we remove any domains that would
lead to results that are inconsistent with the expected return type. For example, if the
type checker expects an Integer as the result of an application of +, it can safely
discard domains involving Float and Complex. After this initial filtering, it can re-
move subsumed domains as before. As a result, the error message that is shown when
applying + with an expected type of Integer mentions only Integer.

The same techniques are used when printing types at the REPL, which is the other
important point of contact between programmers and types. Full types can be displayed
on demand if programmers want to explore them.

> (+ 1 "A")
Type Checker: No function domains

matched in function application:
Domains:

Zero Zero
Zero Positive-Byte
Byte Positive-Byte
Byte Byte

... <snip 58 lines> ...
Real Real
Float-Complex Number
Number Float-Complex
Number Number

Arguments: Positive-Byte String
in: (+ 1 "A")

> (+ 1 "A")
Type Checker: No function domains
matched in function application:

Domains: Number Number
Arguments: Positive-Byte String
in: (+ 1 "A")

Figure 3: Original typechecking error message versus simplified error message

6.4 Typechecking Literals

Finally, the fine-grained distinctions among types affect the type-checking of literals.
When assigning a type to a literal, the typechecker needs to know where that literal falls
with regards to the divisions discussed previously. Since the typechecker has access
to the value of literals, this is for the most part straightforward. Portability between
platforms complicates matters, however, and compiled Racket programs are portable.
In particular, it is possible to typecheck and compile a program on one architecture and
to run it on a different one. While the range of integers that fit within a byte is constant,
the range of numbers that Racket stores as tagged machine integers is architecture-
dependent. Hence, the typechecker must make conservative assumptions and assigns
fixed-width integer types only if it is correct to do so on all architectures supported by
Racket. For this reason, the Index type is limited to the closed interval [0, 228− 1] and
Fixnum is limited to [−230, 230 − 1].

6.5 Optimization

Numeric types guide compiler optimizations, and the Typed Racket compiler (Tobin-
Hochstadt et al. 2011) is no exception. It reuses existing optimization technology with
few major changes. Most of the time, the optimizer ignores the fine-grained distinctions,
for example, the distinctions among the various subtypes of Float. Doing so gives the
compiler a view similar to what optimizers would see in other typed languages, making
the reuse of existing optimization techniques straightforward. Examples of numeric op-
timizations performed by the Typed Racket compiler are dispatch elimination, unboxing
and arity-raising of complex number operations.6

6 Wright and Cartwright (1997)’s typing efforts for Scheme-like languages, as well as those of
others, lacked the expressive power to distinguish between different classes of numbers and to
optimize numeric code in this fashion.

7 Related Work

Many dynamic languages, such as Common Lisp (Steele Jr. 1994), Scheme (Sperber et
al. 2009) and Smalltalk (Goldberg and Robson 1983) provide numeric towers. They also
allow for mixed-type arithmetic and dynamically moving from one level of the tower to
another. As far as programmer convenience is concerned, they offer most of the benefits
of Typed Racket. Due to their dynamic nature, however, these languages provide little in
terms of static checking. Other dynamic languages such as Python, and Ruby provide
mixed type arithmetic and a numeric tower, but with fewer types, typically omitting
exact rationals, complex numbers, and sometimes arbitary size integers as well.

Languages in the SIMULA 67 (Dahl 1968) tradition such as Java (Gosling et al.
2005), C (ISO 1999) and C++ (Stroustrup 2000) provide static checking, but let pro-
grammers escape the type system. These languages provide mixed-type arithmetic for a
small number of specific cases, but beyond that, programmers have to rely on labor-
intensive operator overloading tricks in C++ or settle for an inconvenient notation.
Typed functional languages, such as Haskell (Marlow 2010), Standard ML (Milner et
al. 1997) and Ocaml (Leroy et al. 2010) provide static checking equivalent to numeric
layers alone without subtyping. Haskell provides a large and extensible set of layers, but
it does not support the sign and range properties of Typed Racket. Also, each of these
languages have different stances on overloading. Ocaml does not provide any overload-
ing for numeric operations. Programmers must choose between the + and +. operators
depending on whether they are adding integers or floating-point numbers respectively.
SML provides overloading in a small number of cases in the same way Java does. Fi-
nally, Haskell’s type classes provide overloading, but disallow mixed-type arithmetic.
Special handling of literals makes mixed-type arithmetic unnecessary in some cases,
but in general explicit coercions between numeric types are necessary.

Finally, the Habit (Jones 2010) language is a dialect of Haskell for systems pro-
gramming. Its type system enforces arithmetic properties about integers, provides a
large variety of fixed-width integer types and aims to provide a large array of strong
static guarantees. However, this significantly increases the proof obligation on the pro-
grammer. Although the kinds of guarantees Habit provides are valuable when writing
highly reliable systems software, the costs of these guarantees are inconvenient for a
general-purpose language. In addition, Habit focuses on integers and does not seem to
provide support for interesting properties of other numeric layers.

8 Conclusion

To facilitate numeric programming in Typed Racket, we have supplemented an existing
practical type system with a base type environment that supports rich specification,
concise expression, static checking and effective optimization. The environment makes
crucial use of several existing Typed Racket features: union types for defining a precise
numeric hierarchy, function overloading via intersection types for expressing properties
of operations, and occurrence typing for reasoning about predicates and comparisons.

Our design supports both the convenience of a numeric tower as found in untyped
languages as well as the static checking available with modern typed languages. Addi-
tionally, we support strong specifications expressing sign, range, and layer information

about numeric values. Our Typed Racket implementation demonstrates the effective-
ness of the approach both in typechecking existing code as well as providing static
information for effective optimizations of numeric programs.

Bibliography

Peter Buneman and Benjamin Pierce. Union types for semistructured data. In Proc. Works. on
Database Programming Languages, pp. 184–207, 1999.

Mario Coppo and Mariangiola Dezani-Ciancaglini. A new type assignment for λ-terms. Archiv
Math. Logik 19, pp. 139–156, 1978.

Ole-Johan Dahl. SIMULA 67 Common Base Language. Norwegian Computing Center, 1968.
Matthew Flatt and PLT. Reference: Racket. PLT Inc., PLT-TR-2010-1, 2010. http://

racket-lang.org/tr1/

Adele Goldberg and David Robson. Smalltalk-80: the Language and its Implementation.
Addison-Wesley, 1983.

James Gosling, Bill Joy, Guy L. Steele Jr., and Gilad Bracha. The Java™ Language Specification.
Fourth edition. Addison-Wesley, 2005.

ISO. ISO C Standard 1999. 1999.
Mark P. Jones. The Habit programming language: the revised preliminary report. 2010.
Xavier Leroy, Damien Doligez, Alain Frisch, Jacques Garrigue, Didier Rémy, and Jérôme Vouil-

lon. The Objective Caml system, Documentation and user’s manual. 2010.
Peter A. W. Lewis, A. S. Goodman, and J. M. Miller. A pseudo-random number generator for the

System/360. IBM Systems Journal 8(2), pp. 136–146, 1969.
Simon Marlow (editor). Haskell 2010 Language Report. 2010.
Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The Definition of Standard ML,

Revised Edition. MIT Press, 1997.
Benjamin C. Pierce and David N. Turner. Local type inference. ACM Transactions on Program-

ming Languages and Systems 22(1), pp. 1–44, 2000.
Jon Postel. DoD standard Transmission control protocol. IETF RFC 761, 1980.
John C. Reynolds. Preliminary design of the programming language Forsythe. Technical report

CMU-CS-88-159, Carnegie-Mellon University, 1988.
Michael Sperber, Matthew Flatt, Anton Van Straaten, R. Kent Dybvig, Robert Bruce Findler,

and Jacob Matthews. Revised6 report on the algorithmic language Scheme. J. of Functional
Programming 19(S1), pp. 1–301, 2009.

Guy L. Steele Jr. Common Lisp: the Language. Second edition. Digital Press, 1994.
Bjarne Stroustrup. The C++ Programming Language. Third edition. Addison-Wesley, 2000.
Sam Tobin-Hochstadt and Matthias Felleisen. The design and implementation of Typed Scheme.

In Proc. Symp. on Principles of Programming Languages, pp. 395–406, 2008.
Sam Tobin-Hochstadt and Matthias Felleisen. Logical types for untyped languages. In Proc. In-

ternational Conf. on Functional Programming, pp. 117–128, 2010.
Sam Tobin-Hochstadt, Vincent St-Amour, Ryan Culpepper, Matthew Flatt, and Matthias

Felleisen. Languages as libraries. In Proc. Programming Language Design and Implemen-
tation, pp. 132–141, 2011.

Andrew K. Wright and Robert Cartwright. A practical soft type system for Scheme. ACM Trans-
actions on Programming Languages and Systems 19(1), pp. 87–152, 1997.

http://racket-lang.org/tr1/
http://racket-lang.org/tr1/

	Typing the Numeric Tower

